A note on Grüss type inequalities via Cauchy's mean value theorem
نویسندگان
چکیده
منابع مشابه
A note on the Young type inequalities
In this paper, we present some refinements of the famous Young type inequality. As application of our result, we obtain some matrix inequalities for the Hilbert-Schmidt norm and the trace norm. The results obtained in this paper can be viewed as refinement of the derived results by H. Kai [Young type inequalities for matrices, J. Ea...
متن کاملAn Inequality of Ostrowski Type via Pompeiu’s Mean Value Theorem
(b− a)M, for all x ∈ [a, b] . The constant 14 is best possible in the sense that it cannot be replaced by a smaller constant. In [2], the author has proved the following Ostrowski type inequality. Theorem 2. Let f : [a, b] → R be continuous on [a, b] with a > 0 and differentiable on (a, b) . Let p ∈ R\ {0} and assume that Kp (f ) := sup u∈(a,b) { u |f ′ (u)| } < ∞. Then we have the inequality...
متن کاملSome Ostrowski Type Inequalites via Cauchy’s Mean Value Theorem
Some Ostrowski type inequalities via Cauchy’s mean value theorem and applications for certain particular instances of functions are given.
متن کاملGrüss type inequalities for double integrals on time scales
We prove some weighted Grüss type inequalities for double integrals on time scales and unify the corresponding continuous and discrete versions, which are the generalizations of the results proved earlier in the literature
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2008
ISSN: 1331-4343
DOI: 10.7153/mia-11-04